Geographic Information Systems

WHAT IS A GIS?

- a computer system of hardware, software and methods
- to capture, manage, manipulate, analyse, model, display
- spatial data (geographic objects) and
- non-spatial data (attribute data)
- to solve planning and management problems.

This is the main purpose of the GIS!

REMOTE SENSING

- The collecting of information
- about the earth's surface
 - with sensors on platforms such as weather balloons, aeroplanes and satellites
- using energy reflected or radiated from the earth

without being in physical contact with the earth

What is a spatial object?

What is resolution?

The ability of a remote sensing sensor to create a sharp and clear image

Spatial resolution

Objects easily recognised

Objects not easily recognised

GIS DATA TYPES

SPATIAL DATA

All geographic features/objects both natural and man-made [Map data]

ATTRIBUTE DATA

Characteristics/description/information of the geographic objects

Spatial data structures

Pixels

Points, lines, areas (Nodes, arcs, polygons)

Spatial data structures

GIS DATA LAYERS

All spatial data whether it is vector data or raster data are shown in layers

Each layer represents a single entity/theme

It is this characteristic that enables a GIS to manipulate, integrate, and query data.

DATA MANIPULATION AND ANALYSIS

Data can be manipulated (edited and processed) and analysed by a GIS.

- Transforming from one map projection to another
- Converting data from raster to vector format and from vector to raster format
- Interpolation between points (eg. spot heights)

DATA INTEGRATION

The integration of data involves the combination of two or more data layers in order to create a new one

BUFFERING

It is sometimes necessary to identify zones at different distances from certain geographic features.

- noise buffers next to roads
- safety buffers for dangerous areas

NOW LET'S GIS

Examples of:

- Points/nodes
- Lines/arcs
- Areas/Polygons

Using both the vector and raster data structure, show a road, the two schools and the cultivated fields

Create an attribute table for the hospital

REMEMBER Pixels

POSSIBLE ATTRIBUTES

Name of hospital Street address Postal address Geographical Coordinates Number of beds Number of doctors Number of nursing personnel Intensive care unit Paediatric centre Number of operating theatres

ATTRIBUTES FOR HOSPITAL					
Name	Address	Number of	Number of	Number of	
		doctors	nursingstaff	beds	
Seaview	Kam Street				
General	Stanford	6	24	60	
Hospital					

HOW TO USE GIS?

Grade 12 Paper 2 GIS Question recently asked questions relating to analysis

Determine/identify/name which data layers to use in solving a problem?

Without thinking about GIS identify factors/issues that play a role or relates to the problem

This will also be the data layers needed in the analysis to get the solution to the problem?

Shops	Floods	Crime
 Available plots Costs of plots Distance to other shops Client base Client buying habits Central place Influence sphere 	 Relief (contours) History Rainfall figures 50 year floodline Development above 50yfl Development below 50yfl Bridges Residential areas affected Evacuation routes 	 Type Location Time Frequency Risk zones Neighbourhood characteristics

Telecom

- 1. Relief (contours)
- 2. Viewsheds
- 3. Intervisibility
- 4. Distance between towers
- 5. Signal strength

Terrain Analysis

- 1. Vegetation type
- 2. Vegetation structure
- 3. Soil type
- 4. Soil texture
- 5. Soil moisture
- 6. Slopes
- 7. Aspect
- 8. Surface roughness

Application P2 Nov 2014

Create a bufferzone of 250m around marsh/vlei area

Remember that 250m in reality will be 5mm on a 1:50 000 map